first refactored version

This commit is contained in:
schneuwl 2026-01-10 11:53:07 +01:00
parent 6cb2e768e0
commit 391620fd5c
4 changed files with 2759 additions and 26 deletions

View File

@ -6,7 +6,7 @@ from urllib.parse import urlparse
from tqdm.auto import tqdm from tqdm.auto import tqdm
# --- KONFIGURATION --- # s3 bucket configuration
MINIO_CONFIG = { MINIO_CONFIG = {
'endpoint_url': 'https://minio.hgk.ch', 'endpoint_url': 'https://minio.hgk.ch',
'access_key': 'meinAccessKey', 'access_key': 'meinAccessKey',
@ -14,28 +14,32 @@ MINIO_CONFIG = {
'bucket': 'skiai' 'bucket': 'skiai'
} }
# input specs, annotations
JSON_PATH = 'datasets/skier_pose/labelstudio_export.json' JSON_PATH = 'datasets/skier_pose/labelstudio_export.json'
OUTPUT_DIR = 'datasets/skier_pose' # input specs, keypoint orde must stay consistent
TRAIN_RATIO = 0.8
# Die Reihenfolge MUSS konsistent bleiben
KP_ORDER = [ KP_ORDER = [
"leftski_tip", "leftski_tail", "rightski_tip", "rightski_tail", "leftski_tip", "leftski_tail", "rightski_tip", "rightski_tail",
"leftpole_top", "leftpole_bottom", "rightpole_top", "rightpole_bottom" "leftpole_top", "leftpole_bottom", "rightpole_top", "rightpole_bottom"
] ]
# output specs
OUTPUT_DIR = 'datasets/skier_pose'
TRAIN_RATIO = 0.8
# create folder structure
def __setup_directories():
def setup_directories():
"""Erstellt die Struktur: train/images, train/labels, val/images, val/labels"""
for split in ['train', 'val']: for split in ['train', 'val']:
os.makedirs(os.path.join(OUTPUT_DIR, split, 'images'), exist_ok=True) os.makedirs(os.path.join(OUTPUT_DIR, split, 'images'), exist_ok=True)
os.makedirs(os.path.join(OUTPUT_DIR, split, 'labels'), exist_ok=True) os.makedirs(os.path.join(OUTPUT_DIR, split, 'labels'), exist_ok=True)
def download_from_minio(s3_path, local_path): # download image from s3
def __download_from_minio(s3_path, local_path):
parsed = urlparse(s3_path) parsed = urlparse(s3_path)
bucket = MINIO_CONFIG['bucket'] bucket = MINIO_CONFIG['bucket']
# Entfernt 's3://bucketname/' falls vorhanden, sonst nur den slash # removes 's3://bucketname/' if existing, otherwise slash
key = parsed.path.lstrip('/') key = parsed.path.lstrip('/')
s3 = boto3.client('s3', s3 = boto3.client('s3',
@ -45,8 +49,11 @@ def download_from_minio(s3_path, local_path):
s3.download_file(bucket, key, local_path) s3.download_file(bucket, key, local_path)
def convert_to_yolo(): # create YOLO dataset
setup_directories() def createYOLOdataset():
__setup_directories()
# read annotations
with open(JSON_PATH, 'r', encoding='utf-8') as f: with open(JSON_PATH, 'r', encoding='utf-8') as f:
data = json.load(f) data = json.load(f)
@ -54,10 +61,11 @@ def convert_to_yolo():
random.shuffle(data) random.shuffle(data)
split_idx = int(len(data) * TRAIN_RATIO) split_idx = int(len(data) * TRAIN_RATIO)
# loop over all images
for i, entry in enumerate(tqdm(data, desc="Importing Images", unit="img")): for i, entry in enumerate(tqdm(data, desc="Importing Images", unit="img")):
split = 'train' if i < split_idx else 'val' split = 'train' if i < split_idx else 'val'
# Dateinamen aus dem 'data'-Feld holen # get image name
image_s3_path = entry['data']['image'] image_s3_path = entry['data']['image']
filename = os.path.basename(image_s3_path) filename = os.path.basename(image_s3_path)
base_name = os.path.splitext(filename)[0] base_name = os.path.splitext(filename)[0]
@ -66,20 +74,20 @@ def convert_to_yolo():
label_local_path = os.path.join(OUTPUT_DIR, split, 'labels', f"{base_name}.txt") label_local_path = os.path.join(OUTPUT_DIR, split, 'labels', f"{base_name}.txt")
try: try:
download_from_minio(image_s3_path, img_local_path) __download_from_minio(image_s3_path, img_local_path)
except Exception as e: except Exception as e:
tqdm.write(f"Error treating {filename}: {e}") tqdm.write(f"Error treating {filename}: {e}")
continue continue
yolo_lines = [] yolo_lines = []
# Sicherstellen, dass Annotationen vorhanden sind # check if annotations, otherwise skip
if not entry.get('annotations'): if not entry.get('annotations'):
continue continue
results = entry['annotations'][0].get('result', []) results = entry['annotations'][0].get('result', [])
# Hilfsmaps für das Matching über IDs # dummy vars
kp_map = {} # ID -> {label, x, y} kp_map = {} # ID -> {label, x, y}
visibility_map = {} # ID -> v_status (1 oder 2) visibility_map = {} # ID -> v_status (1 oder 2)
bboxes = [] # Liste aller gefundenen BBoxes bboxes = [] # Liste aller gefundenen BBoxes
@ -97,8 +105,6 @@ def convert_to_yolo():
} }
elif res_type == 'choices': elif res_type == 'choices':
# Matching: Label Studio nutzt die gleiche ID für Keypoint und Choice
# Wir prüfen, ob die Checkbox "1" (dein Alias für verdeckt) gewählt wurde
if "1" in val.get('choices', []): if "1" in val.get('choices', []):
visibility_map[res_id] = 1 visibility_map[res_id] = 1
@ -110,18 +116,16 @@ def convert_to_yolo():
by = (val['y'] / 100.0) + (bh / 2.0) by = (val['y'] / 100.0) + (bh / 2.0)
bboxes.append(f"{bx:.6f} {by:.6f} {bw:.6f} {bh:.6f}") bboxes.append(f"{bx:.6f} {by:.6f} {bw:.6f} {bh:.6f}")
# Für jede gefundene BBox eine YOLO Zeile generieren # create yolo data
# (Hinweis: Aktuell werden alle Keypoints an jede BBox gehängt)
for bbox_coords in bboxes: for bbox_coords in bboxes:
line = f"0 {bbox_coords}" line = f"0 {bbox_coords}"
for kp_name in KP_ORDER: for kp_name in KP_ORDER:
# Finde die ID des Keypoints mit diesem Namen
target_id = next((id for id, d in kp_map.items() if d['label'] == kp_name), None) target_id = next((id for id, d in kp_map.items() if d['label'] == kp_name), None)
if target_id: if target_id:
coords = kp_map[target_id] coords = kp_map[target_id]
# Sichtbarkeit: 1 (verdeckt) wenn in visibility_map, sonst 2 (sichtbar) # visibility, 0 missing, 1 invisible, 2 visible
v = visibility_map.get(target_id, 2) v = visibility_map.get(target_id, 2)
line += f" {coords['x']:.6f} {coords['y']:.6f} {v}" line += f" {coords['x']:.6f} {coords['y']:.6f} {v}"
else: else:
@ -132,7 +136,7 @@ def convert_to_yolo():
with open(label_local_path, 'w', encoding='utf-8') as f: with open(label_local_path, 'w', encoding='utf-8') as f:
f.write('\n'.join(yolo_lines)) f.write('\n'.join(yolo_lines))
print(f"Fertig! Daten liegen in: {os.path.abspath(OUTPUT_DIR)}") print(f"Finished! Dataset saved to: {os.path.abspath(OUTPUT_DIR)}")
if __name__ == "__main__": if __name__ == "__main__":
convert_to_yolo() createYOLOdataset()

View File

@ -1,16 +1,18 @@
from ultralytics import YOLO from ultralytics import YOLO
# Create a new YOLO model from scratch # Create a new YOLO model from scratch
#model = YOLO("yolo11n.yaml") #model = YOLO("yolo11n.yaml")
# Load a pretrained YOLO model (recommended for training) # Load a pretrained YOLO model (recommended for training)
model = YOLO("yolo11n-pose.pt") #model = YOLO("yolo11n-pose.pt")
# Train the model using the 'coco8.yaml' dataset for 3 epochs # Train the model using the 'coco8.yaml' dataset for 3 epochs
results = model.train(data="datasets/skier_pose/skier_pose.yaml", epochs=200, imgsz=640, device='mps') #results = model.train(data="datasets/skier_pose/skier_pose.yaml", epochs=200, imgsz=640, device='mps')
# Evaluate the model's performance on the validation set # Evaluate the model's performance on the validation set
results = model.val() #results = model.val()
# Perform object detection on an image using the model # Perform object detection on an image using the model
#results = model("bus.jpg", device='cpu') #results = model("bus.jpg", device='cpu')

File diff suppressed because it is too large Load Diff

24
specs/skier_pose.yaml Normal file
View File

@ -0,0 +1,24 @@
path: datasets/skier_pose # relativer Pfad zum Dataset-Ordner
train: train
val: val
# Keypoints Konfiguration
kpt_shape: [8, 3] # 8 Keypoints, jeweils (x, y, visibility)
# Flip-Indizes für Augmentation (Spiegelung)
# Wenn das Bild gespiegelt wird:
# 0 (left tip) wird zu 2 (right tip) und umgekehrt
# 1 (left tail) wird zu 3 (right tail) und umgekehrt
# 4 (left pole top) wird zu 6 (right pole top) etc.
flip_idx: [2, 3, 0, 1, 6, 7, 4, 5]
# Skeleton: Verbindungen für die Visualisierung und Strukturhilfe
# Definiert Paare von Keypoint-Indizes (0-basiert)
skeleton:
- [0, 1] # Linker Ski (Tip zu Tail)
- [2, 3] # Rechter Ski (Tip zu Tail)
- [4, 5] # Linker Stock (Top zu Bottom)
- [6, 7] # Rechter Stock (Top zu Bottom)
names:
0: skier